pedestrian-and-vehicle-detector-adas-0001

Use Case and High-Level Description

Pedestrian and vehicle detection network based on MobileNet v1.0 + SSD.

Example

Specification

Metric Value
AP for pedestrians 88%
AP for vehicles 90%
Target pedestrian size 60x120 pixels
Target vehicle size 40x30 pixels
GFLOPS 3.974
MParams 1.650
Source framework Caffe*

Average Precision (AP) metric is described in: Mark Everingham et al. The PASCAL Visual Object Classes (VOC) Challenge.

Tested on challenging internal datasets with 1001 pedestrian and 12585 vehicles to detect.

Inputs

Image, name: input, shape: 1, 3, 384, 672 in the format B, C, H, W, where:

  • B - batch size
  • C - number of channels
  • H - image height
  • W - image width

Expected color order is BGR.

Outputs

The net outputs blob with shape: 1, 1, 200, 7 in the format 1, 1, N, 7, where N is the number of detected bounding boxes. Each detection has the format [image_id, label, conf, x_min, y_min, x_max, y_max], where:

  • image_id - ID of the image in the batch
  • label - predicted class ID (1 - vehicle, 2 - pedestrian)
  • conf - confidence for the predicted class
  • (x_min, y_min) - coordinates of the top left bounding box corner
  • (x_max, y_max) - coordinates of the bottom right bounding box corner

Legal Information

[*] Other names and brands may be claimed as the property of others.