ssd512

Use Case and High-Level Description

The ssd512 model is a Single-Shot multibox Detection (SSD) network intended to perform detection. This model is implemented using the Caffe*framework. For details about this model, check out the repository.

The model input is a blob that consists of a single image of 1x3x512x512 in BGR order. The BGR mean values need to be subtracted as follows: [104.0,117.0,123.0] before passing the image blob into the network.

The model output is a typical vector containing the tracked object data, as previously described.

Example

See here.

Specification

Metric Value
Type Detection
GFLOPs 180.611
MParams 27.189
Source framework Caffe*

Accuracy

Metric Value
mAP 90.3845%

See here.

Performance

Input

Original model

Image, name - data, shape - 1,3,512,512, format is B,C,H,W where:

Channel order is BGR. Mean values - [104.0,117.0,123.0]

Converted model

Image, name - data, shape - 1,3,512,512, format is B,C,H,W where:

Channel order is BGR.

Output

Original model

The array of detection summary info, name - detection_out, shape - 1, 1, N, 7, where N is the number of detected bounding boxes. For each detection, the description has the format: [image_id, label, conf, x_min, y_min, x_max, y_max], where:

Converted model

The array of detection summary info, name - detection_out, shape - 1, 1, N, 7, where N is the number of detected bounding boxes. For each detection, the description has the format: [image_id, label, conf, x_min, y_min, x_max, y_max], where:

Legal Information

The original model is distributed under the following license:

COPYRIGHT
All new contributions compared to the original branch:
Copyright (c) 2015, 2016 Wei Liu (UNC Chapel Hill), Dragomir Anguelov (Zoox),
Dumitru Erhan (Google), Christian Szegedy (Google), Scott Reed (UMich Ann Arbor),
Cheng-Yang Fu (UNC Chapel Hill), Alexander C. Berg (UNC Chapel Hill).
All rights reserved.
All contributions by the University of California:
Copyright (c) 2014, 2015, The Regents of the University of California (Regents)
All rights reserved.
All other contributions:
Copyright (c) 2014, 2015, the respective contributors
All rights reserved.
Caffe uses a shared copyright model: each contributor holds copyright over
their contributions to Caffe. The project versioning records all such
contribution and copyright details. If a contributor wants to further mark
their specific copyright on a particular contribution, they should indicate
their copyright solely in the commit message of the change when it is
committed.
LICENSE
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
CONTRIBUTION AGREEMENT
By contributing to the BVLC/caffe repository through pull-request, comment,
or otherwise, the contributor releases their content to the
license and copyright terms herein.