pedestrian-detection-adas-binary-0001

Use Case and High-Level Description

Pedestrian detection network based on SSD framework with tuned MobileNet v1 as a feature extractor. Some layers of MobileNet v1 are binary and use I1 arithm

Example

pedestrian-detection-adas-binary-0001.png

Specification

Metric Value
Average Precision (AP) 84%
Target pedestrian size 60 x 120 pixels on Full HD image
Max objects to detect 200
GFlops 0.750
GI1ops 2.086
MParams 1.165
Source framework PyTorch*

Average Precision metric described in: Mark Everingham et al. The PASCAL Visual Object Classes (VOC) Challenge.

Tested on an internal dataset with 1001 pedestrian to detect.

Performance

Inputs

Name: input, shape: [1x3x384x672] - An input image in the format [BxCxHxW], where:

Outputs

  1. The net outputs a blob with shape: [1, 1, N, 7], where N is the number of detected bounding boxes. For each detection, the description has the format: [image_id, label, conf, x_min, y_min, x_max, y_max]
    • image_id - ID of the image in the batch
    • label - predicted class ID
    • conf - confidence for the predicted class
    • (x_min, y_min) - coordinates of the top left bounding box corner
    • (x_max, y_max) - coordinates of the bottom right bounding box corner.

Legal Information

[*] Other names and brands may be claimed as the property of others.

The net is tuned from pedestrian-detection-adas-0002.