Use Case and High-Level Description

Pedestrian and vehicle detection network based on MobileNet v1.0 + SSD.




Metric Value
AP for pedestrians 88%
AP for vehicles 90%
Target pedestrian size 60x120 pixels
Target vehicle size 40x30 pixels
GFLOPS 3.974
MParams 1.650
Source framework Caffe*

Average Precision (AP) metric is described in: Mark Everingham et al. The PASCAL Visual Object Classes (VOC) Challenge.

Tested on challenging internal datasets with 1001 pedestrian and 12585 vehicles to detect.



Name: input, shape: [1x3x384x672] - An input image in the format [BxCxHxW], where:


  1. The net outputs blob with shape: [1, 1, N, 7], where N is the number of detected bounding boxes. For each detection, the description has the format: [image_id, label, conf, x_min, y_min, x_max, y_max]
    • image_id - ID of the image in the batch
    • label - predicted class ID
    • conf - confidence for the predicted class
    • (x_min, y_min) - coordinates of the top left bounding box corner
    • (x_max, y_max) - coordinates of the bottom right bounding box corner.

Legal Information

[*] Other names and brands may be claimed as the property of others.